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Abstract 

It is shown that there exists on the light cone an affine connection which is metric, semi- 
symmetric and locally integrable. There exists a correspondence between this connection 
and a system of charges moving with the velocity of light. The correspondence reveals 
in the case of commensurable charges a symmetry which disappears for non-commen- 
surable charges. 

1. Introduction 

The line e lement  o f  the Minkowsk i  space referred to the s tereographic  
coord ina tes  has the fo rm 

x 2 + y2~-2 
- d s  2 = dt 2 - dr 2 - r 2 1 + ~ (dx 2 + dy 2) (1.1) 

/ 

On the hypersurface  t = r 

ds2= r 2 ( 1 - t - ~ ) - 2 ( d x 2  + dy2) = g,kdx'  dx  ~ (1.2) 

where x 1 = r, x 2 = x, x 3 = y. Since det(g~k) = 0, there  is no na tu ra l  no t ion  
o f  para l le l i sm within the l ight cone. Our  a im is to  in t roduce  an  affine 
connect ion  within the l ight cone and  to describe some o f  its propert ies .  

A n  affine connec t ion  F~,z is called metr ic  i f  

V t  gkl df 01 gkl --  Ft~gst - F~tgks = 0 (1.3) 

it  is cal led symmetr ic  i f  F~,z - F~k = 0 and  semisymmetr ic  i f  there exists a 
vector  St such tha t  F ~ z -  F~k = Sk6l ~ -  S~ 6k ~. One can prove the theorem 
(Vogel, 1965): i f  r ank  o f  the mat r ix  (g~k), i, k = 1, 2 . . . .  , n, is n -  1, then 
there exists a metr ic  and  symmetr ic  connect ion  F~, i f  and  o n l y i f  there  exists 
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locally a coordinate system in which glz = 0, al g~k = 0. Since the second 
condition is not satisfied for the light cone, we have to make a choice: 
either to assume that there is no torsion but a vector, displaced in a parallel 
manner, changes its length, or to accept the fact that the light cone is a 
space naturally endowed with torsion. The first possibility is chosen by 
Lemmer (1965) and Da~ttcourt (1967); we prefer the second one, for the 
following reason. Lemmer constructs a parallel displacement by means of 
the invariant rigging of a null hypersurface introduced by Jordan, Ehlers 
and Sachs. The rigging is uniquely determined by a family of null hyper- 
surfaces. However, for a single light cone in the Minkowski space no such 
natural rigging exists; it is impossible to define any rigging in a Lorentz 
invariant way. 

We shall adopt the following, manifestly Lorentz invariant procedure: 
since equations (1.3) do not determine the unknown functions F~,~ uniquely, 
we add further conditions: 

(a) the connection should preserve the Lorentz invariant volume ~ of 
the light cone: 

V~/~ ~ 0~/~ - F~#  = 0 (1.4) 

in the stereographic coordinates p is equal to rf  z where 

1 
7 = 1 2 + y2) (1.5) 

(b) the connection should be semisymmetric; 
(c) it should be locally integrable, i.e. there should exist three linearly 

independent vector fields w~, s = 1, 2, 3, such that 

v ,  0, - = o (1 .6 )  

It turns out that all the conditions can be simultaneously satisfied. Omitting 
simple calculations, we give the result written in the stercographic co- 
ordinates. The vector S~ resulting from condition (b) is a gradient 

S~ = 0i G (1.7) 
where 

G(r, x, y) = In (rf) + Go(x, y) (1.8) 

and Go(x,y) is an arbitrary harmonic function: 022Go + 033Go = 0. The 
parallel vectors w~ have the form 

$ 

wi = Si, w~ -- (0, rfcos F, rfsin F), w~ = (0, - r f s in  F, rfcos F) (1.9) 
1 2 

where Fis  a harmonic function connected with Go by the Cauchy-Riemann 
conditions: 02 F - -  -0a Go, 03 F = 02 Go. The connection F~ a may be obtained 
algebraically as the solution of  equation (1.6); it is therefore the 
WeitzenbSck connection determined by parallel vectors wv 
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2. The Topological Structure o f  the Light Cone and Global 
Integrability Conditions 

There exists in nature a simple realisation of the light cone: it is the set 
of  all energy-momentum states of  the photon. It is not necessary to think 
that this set is immersed in a four-dimensional space; we can and, in fact, 
we should treat it as a three-dimensional manifold which exists inde- 
pendently of  its relation to the four-dimensional space. But there is no 
photon with frequency equal exactly to zero. This means geometrically 
that the light cone is a three-dimensional space with a hole. This fact may 
be understood as an affine property of the light cone; given affine connection 
we can construct all possible geodesic lines. It follows then from our 
formulae that the affine distance from any point of  the light cone to the 
origin is infinite. Consequently the origin of  the light cone does not belong 
to it. 

Suppose now that a vector is displaced in a parallel manner along a 
closed curve; the vector will not return back to its original direction unless 
the change of  Fa long  any closed curve is equal to 2n~, n = 0, :kl, : k 2 , . . . .  
This may be interpreted intuitively as follows. The affine connection is 
determined by a harmonic function Go(x,y), which we may interpret as a 
plane electrostatic potential generated by a distribution of  charges, dipoles, 
quadrupoles, etc. The global integrability condition A F =  2nrc means that 
charges generating Go must be integers. Of course, these charges have no 
physical meaning, they are just singularities of  Go; we shall see, however, 
that there is some connection between these charges and the real ones. 

3. Lorentz Invariance o f  the Affine Connection 

When we say that a geometric object is invariant with respect to the 
Lorentz group, we usually mean that all six Lie derivatives of  this object 
vanish. The metric (1.2) is invariant in this sense. It turns out, however, 
that no metric affine connection can be Lorentz invariant. This fact may 
be astonishing since we have introduced the affine connection by a mani- 
festly Lorentz invariant procedure. To clarify the problem let us consider 
transformation properties of Go(x,y) = Go(z), z = x + iy. Since 
G(r, z) = In (rf(z)) + Go(z) is a scalar 

G(r', z') = G(r(r', z'), z(z')) = In (r' f(z ')) + Go(z') (3.1) 

The Lorentz transformation is a homographic substitution 

~z '+  fl 
z = - - ,  e6 - f17 -- 1 (3.2) 

7z' + 6  

Transformation of  r may be found if one takes into account that the 
Lorentz transformation is a rigid motion of  the light cone. We find from 
(3.1) and (3.2) 

a d z ' )  = Go(z(z')) - In ~ ,  (3.3) 
a z  
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The additional term in (3.3) is the elcctrostatic potential of an isolated 
charge; consequently, if Go(z) is a harmonic function, Go(z') is also a 
harmonic function but, in general, different from Go(z). This explains why 
the Lie derivatives of the connection cannot simultaneously vanish. 

We conclude that the affme connection is not an invariant but generates a 
representation of the Lorentz group: the formulae (1.8) and (1.9) have the 
same form in all Lorentz systems, but the harmonic function Go, when 
transformed, becomes a different harmonic function. 

It is clear that G~(z') will be a function of the same type as Go(z) if Go(z) 
is the electrostatic potential generated by point charges: 

Go(z) = ~ q.ln[z - z,I (3.4) 
I I  

where q, are integers. We have 
+ P 1 

Go(z') = ~ q," z. - In 

( 2 -  ~ q.)In [Vz'+ 6 [ +  ~ q, In [z ' - z~l+ ~q,  In 7znl (3.5) 
\ n / n n 

The last term in (3.5) is a constant which does not affect the affine con- 
nection. We see, therefore, that the function G~(z') will be of the same type 
as Go(z) if 

qn = 2 (3.6) 
n 

4. The Electric Current of a System of Point Charges and lts 
Connection with the Affine Properties of the Light Cone 

Let j~(k), I~ = O, 1, 2, 3 be the Fourier transform of the electric current 
of a system of point charges. It is usual to divide j~(k) on two parts: the 
part regular for ko -> 0 and the singular part, which generates the so-called 
infrared radiation. The singular part of the current equals (Jauch & 
Rohrlich, 1955) 

j , ( k ) = ~ e ~ ,  kzuZ(+~) kzuZ(_~) ) (4.1) 

here e~ are charges and u , (+~)  velocities at plus and minus infinity. It is 
S 

assumed in equation (4.1) that each particle preserves its identity in the 
process of scattering; it is not necessary to make so stringent an assumption. 
We may imagine that particles disintegrate in the process of scattering. 
Moreover, we make the following convention: contributions to the asymp- 
totic current are written with their proper sign if they come from plus 
infinity and with changed sign if they come from minus infinity. With this 
convention the current may be written in a more symmetric form 

Ut~ 
S 

ju(k) = ~ esk~u~, ~es-- -0  (4.2) 
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The number of  terms in (4.2) can be odd; for example, if  a particle dis- 
integrates on two particles, there are three terms inj~(k). 

The current (4.2) is conserved: k~'jF,(k)= O; this means that the current 
lies upon the cone k~k~ = 0. Let k~ = k~(x ~) be the parametrisation of  the 
cone by means of  the stereographic coordinates; since the current is an 
internal vector, we may refer it to the coordinate system x ~: 

k Ok~ j,(x) =A( ) = o, E u (4.3) 

The current (4.3) takes on a particularly simple form if one assumes that 
all charges move with the velocity of  light. Such an assumption might be 
unphysical; if, however, we treat charges as given sources of  the Maxwell 
field, there is mathematically nothing wrong about charges moving with 
the velocity of  light (Bonnor, 1969). 

For  light-like velocities 
j~ = 0l ~ e~ In lz - z~[ z (4.4) 

where z, is a complex number corresponding to the null direction u" 
according to the general rule 

u ~ + iu z 
�89 uO + u3 (4.5) 

For  every current (4,4) there exists one and only one affine connection 
such that 

V~jk + S~jk = 0 (4.6) 

The condition (4.6) means geometrically that the current is proportional to 
a parallel vector. The connection is generated by the function 

Go(z) = - l n  I~--~ z (4.7) 

where 
~o(z) = ~ e~ In (z - z~) 2 (4.8) 

8 

5. Partitions o f  a Charge Moving with the Velocity o f  Light 

Let us assume that the charge - e l  disintegrates on two charges e2 and 
e3; of  course el + e2 + e3 = 0. In this case 

~o(z) = 21n (z - zl)e~(z - z2)~2(z - z3)~3 
and 

Go(z) = - l n  d~ _ In (z - zl) (z- -  z~___) (z - z3) + const 
a z  z--z 4 

where 
e I z 2 z 3  -~- e 2 z 3 z I -+  e 3 z I 2 2 z4= 

e 1 z~  -+- e 2 z 2 -}- e 3 z 3 

(5.1) 

(5.2) 

(5.3) 
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The current is determined by three null directions zl, z2, za and by three 
charges el, e2, ea. Since these charges satisfy the conservation law and since 
an overall factor in j~ may be arbitrarily fixed by an appropriate choice of 
the unit charge, there is effectively one number which determines the 
current, for example the ratio el/e2. On the other hand Go(z) is determined 
by four null directions z~, z2, z3 and z4. This means that we have received 
a sort of space-time interpretation of a ratio of two charges. In particular, 
if Go(z) is given and we know or assume that it corresponds to the process 
of disintegration of one charge on two charges, we can determine the 
ratio e~/e2 by means of the harmonic ratio 

( z l  - z2)  (z3 - z4)  
(zl zz z3 z ,)  = (zl - z3) (z2 - z4) (5.4) 

which is a space-time invariant. 
We know that all charges in nature happen to be commensurable. What 

is the space-time interpretation of this fact ? The answer is very simple. 
Let K be the circle through z~, z2, z3 and let Ka2 be the circle through zx 

and z2 orthogonal to K; similarly let K23 (K3~) be the circle through zz and 
z3 (z3 and zl) orthogonal to K. Let us reflect z~ in K23, z2 in K3~ and z3 in 
Klz; the images z;, z~ and z~ will fall on K. 

A simple calculation shows that each image, if taken as z4, determines a 
partition of  charge e~ : e2: e3 = 1 : 1 : - 2  or 1 : -2 :1  or - 2 :1  : 1. One can 
continue this procedure, reflecting the images again; one obtains six new 
points which, if taken as z4, determine partitions e~:ez:e3= 1:2 : -3 ,  
1 : -3  : 2, etc. This Lorentz invariant procedure may be further continued: 
every reflexion gives a point which, if taken as z4, determines a partition 
e~ :e2:e3 = n~ :n2:n3, nl + nz + n3 = 0, where nl, nz and n 3 are integers 

Our results may be summed up as follows: the affine connection within 
the light cone, generated in the described way by the current j , ,  possesses a 
higher degree of space-time symmetry if the charges are commensurable. 
It is difficult to say if this has any physical significance since our results can 
be proved only for charges moving with the velocity of light. It should be 
remembered, however, that at present there is no understandable physical 
principle which would explain commensurability of charges; therefore it 
might be interesting that for charges moving with the velocity of light such 
a principle can be formulated. 
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